Uncertainties in simulating tropical cyclones with dynamical downscaling

Asuka Suzuki-Parker, Greg Holland, James Done, and Cindy Bruyere

Background

- Impact of global warming on TC activity is still not clear
- Consensus of future projections with dynamical downscaling:

	#TC	Mean intensity
Global	Reduce	Increase
Regional	???	Increase

EX: Downscaling experiments for North Atlantic #TC 23 studies projected increases 11 studies projected decreases

[Knutson et al. 2010]

Question:

What are the sources of uncertainty in simulating #TC?

✓ Inter-model differences

✓ Various configuration within a single model, and how you count simulated #TC

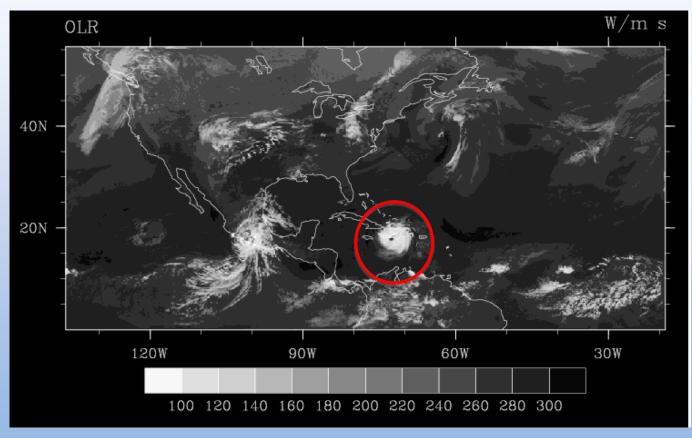
> vi namelist.input

&time_control <u>run_days = 0, run_hours = 12, run_minutes =</u>

0, run_seconds = 0, start_year = 2000, 2000, 2000, start_mont = 01, 01, 01, start_day = 24, 24, 24, start_hour = 1 12, start_minute = 00, 00, 00, start_second = 00, 00, end_year = 2000, 2000, 2000, end_month = 0 01, end_day = 25, 25, 25, end_hour = 12, 12, 12, 00, 00, 00, end_second = 00, 00, 00, interval_sec 21600 input_from_file = .true.,.false.,.false., fine 0,0,0, history_interval = 180, 60, 60, frames_per 1000, 1000, restart = .false., restart_interval = 50 io_form_history = 2 io_form_restart = 2 io_forr 2 io_form_boundary = 2 debug_level = 0 / &domains time_step = 180, max_dom = 1, - BC

<u>0</u> / <u>&domains time_step = 180, max_dom = 1</u>, 1, e we = 74, 112, 94, s sn = 1, 1, 1, e sn = 61, 97.

1, 1, e vert = 28, 28, 28, num metgrid levels = 27 dx = 30000, 10000, 3333, dy = 30000, 10000, 3333, grid id = 1, 2, 3, parent id = 1, 1, 2, i parent start = 1, 31, 30, j parent start = 1, 17, 30, parent grid ratio = 1, 3, 3, parent time step ratio = 1, 3, 3, feedback = 1, / & physics mp physics = 3, 3, 3, ra lw physics = 1, 1, 1, ra sw physics = 1, 1, 1, radt = 30, 30, 30, sf sfclay physics = 1, 1, 1, sf surface physics = 1, 1, 1, num soil layers = 5, bl pbl physics = 1, 1, 1, bldt = 0, 0, 0, cu physics = 1, 1, 0, cudt = 5, 5, 5, / &dynamics w damping = 0, diff opt = 1, km opt = 4, diff 6th opt = 0, diff 6th factor = 0.12, base temp = 290. damp opt = 0, zdamp = 5000., 5000., 5000., dampcoef = 0.2, 0.2, 0.2 khdif = 0, 0, 0, kvdif = 0, 0, 0, non hydrostatic = .true., .true., .true., pd moist =.true., .true., .true., pd scalar =.true., .true., / &bdy control spec bdy width = 5, spec zone = 1, relax zone = 4, specified = .true., .false., .false., nested = .false., .true., .true., /

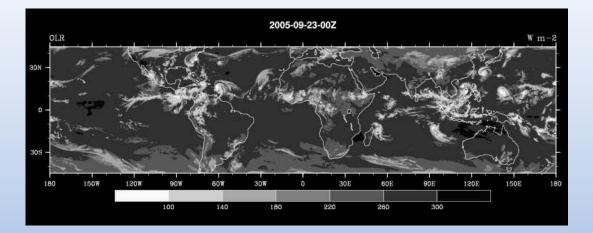

#TC is known to be sensitive to:

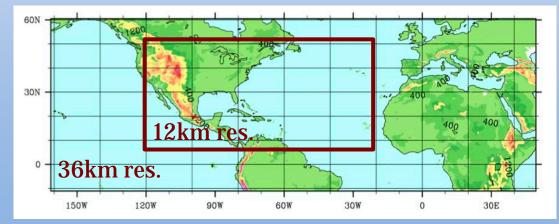
- Resolution
- Parameterization
- Boundary location

> ./configure

Please select from among the following supported platforms. 1. Linux i486 i586 i686, gfortran compiler with gcc (serial) 2. Linux i486 i586 i686, gfortran compiler with gcc (smpar) 3. Linux i486 i586 i686, gfortran compiler with gcc (dm+sm) 5. Linux i486 i586 i686, g95 compiler with gcc (serial) 6. Linux i486 i586 i686, g95 compiler with gcc (dmpar) 7. Linux i486 i586 i686, PGI compiler with gcc (serial) 8. Linux i486 i586 i686, PGI compiler with gcc (serial) 8. Linux i486 i586 i686, PGI compiler with gcc (dm+sm) 10. Linux i486 i586 i686, PGI compiler with gcc (dm+sm) 11. Linux x86_64 i486 i586 i686, ifort compiler with icc (non-SGI installations) (serial) 12. Linux x86_64 i486 i586 i686, ifort compiler with icc (non-SGI installations) (dmpar) 14. Linux x86_64 i486 i586 i686, ifort compiler with icc (non-SGI installations) (dmpar) 15. Linux i486 i586 i686 x86_64, PathScale compiler with pathcc (serial) 16. Linux i486 i586 i686 x86_64, PathScale compiler with pathcc (dmpar)

TC detection and tracking


A snapshot of OLR from NRCM


Sensitivity experiment list

- TC tracking scheme
- Boundary location
- Initial condition (start date)
- Computer architecture

Model setup

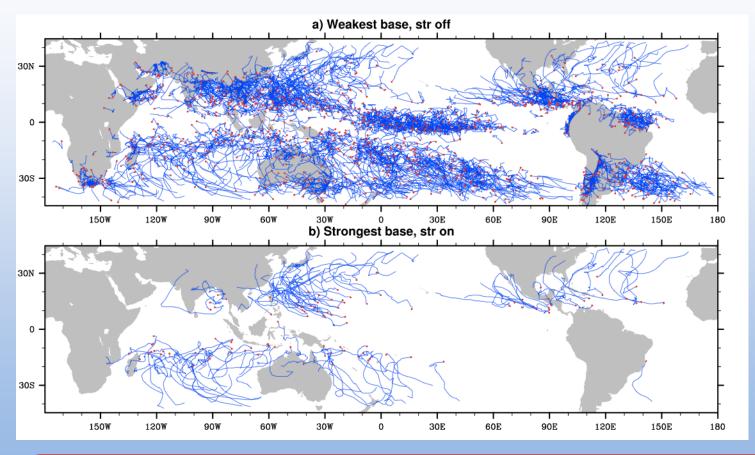
Nested Regional Climate Model

TC tracking scheme and boundary location

- tropical channel
- 36km res.
- NCEP/NCAR forcing

Initial condition, and computer architecture

- 12- and 36km res.
- CCSM forcing


TC tracking parameters

- ✓ Pressure minimum or vorticity maximum
- ✓ Maximum wind speed (V)
- ✓ Vorticity
- ✓ Warm core
 - Usually vertical sum or mean of horizontal temperature anomaly (T')
- ✓ Vertical structure
 - V850>V300, T'300>T'850

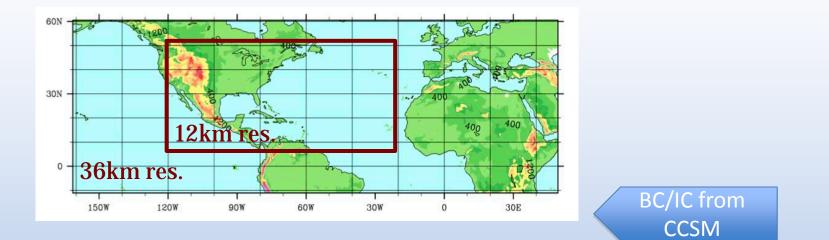
✓ Duration

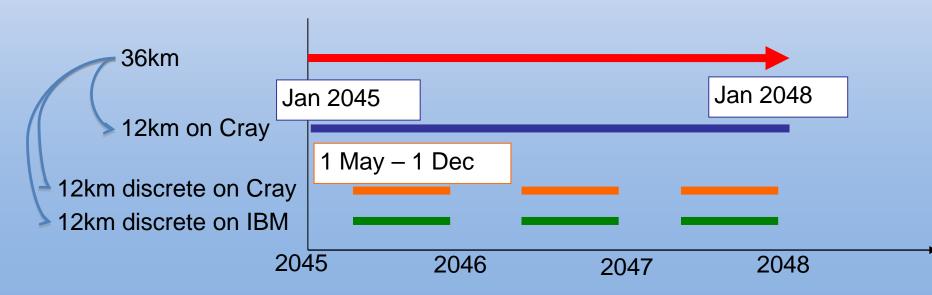
Vary parameters within the range of commonly used values in downscaling experiments

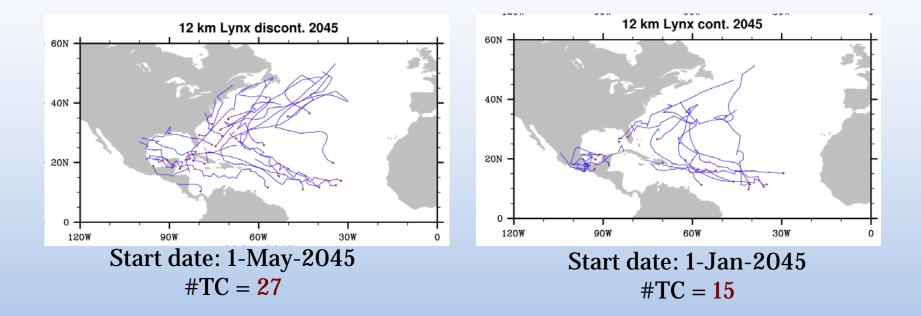
Sensitivity to TC tracking scheme

Least strict 1467 tracks per year

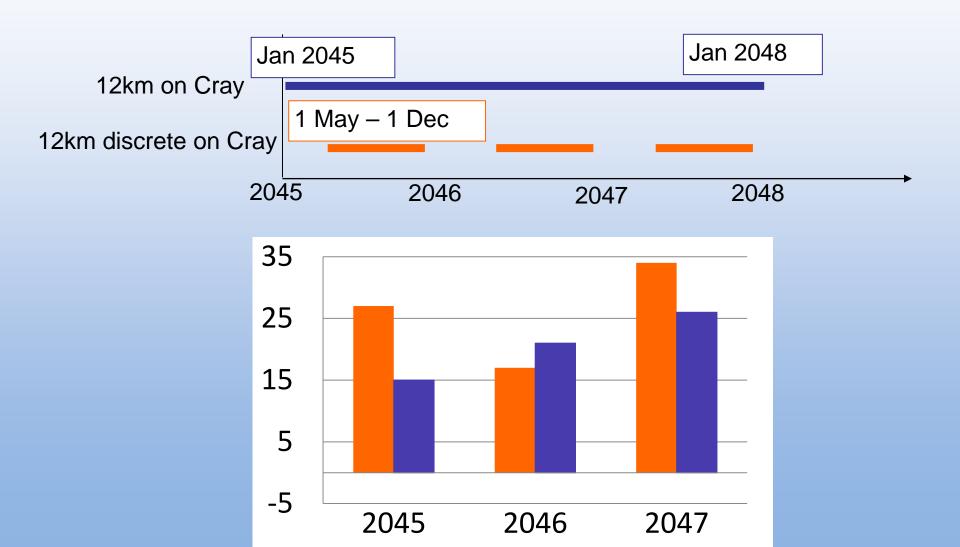
Most strict 106 tracks per year


#TC is highly sensitive to TC tracking scheme, especially to wind speed and duration parameters


Sensitivity to boundary location


Simulated #TC is sensitive to boundary location*

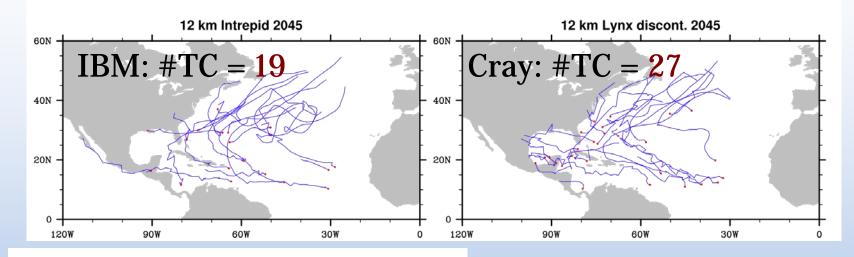
CCSM downscaling simulations

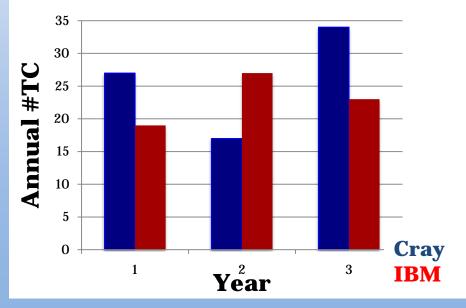

Sensitivity to initial condition

Additional ensemble experiments 10 members, vary initial date by 10 days apart \rightarrow 13 to 20 TCs per season

#TC and genesis locations can be altered by changing initial condition

Sensitivity to initial condition interannual variability


Computer architecture



Computer architecture

Simulated #TC and tracks are sensitive to computer architecture, interannual variability is not conserved

Summary

Simulated #TC is sensitive to:

- TC tracking scheme
- Boundary location
- Initial condition (start date)
- Computer architecture

How do these uncertainties affect future projection?